Graphs, Skeleta and Reconstruction of Polytopes
نویسنده
چکیده
A renowned theorem of Blind and Mani, with a constructive proof by Kalai and an efficiency proof by Friedman, shows that the whole face lattice of a simple polytope can be determined from its graph. This is part of a broader story of reconstructing face lattices from partial information, first considered comprehensively in Grünbaum’s 1967 book. This survey paper includes varied results and open questions by many researchers on simplicial polytopes, nearly simple polytopes, cubical polytopes, zonotopes, crosspolytopes, and Eulerian posets.
منابع مشابه
Hamiltonian properties of generalized pyramids
We investigate here the hamiltonicity and traceability of a class of polytopes generalizing pyramids, prisms, and polytopes with Halin 1-skeleta.
متن کاملThe Lower Bound Theorem for polytopes that approximate C-convex bodies
The face numbers of simplicial polytopes that approximate C-convex bodies in the Hausdorff metric is studied. Several structural results about the skeleta of such polytopes are studied and used to derive a lower bound theorem for this class of polytopes. This partially resolves a conjecture made by Kalai in 1994: if a sequence {Pn}n=0 of simplicial polytopes converges to a C-convex body in the ...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملNon-projectability of Polytope Skeleta
We investigate necessary conditions for the existence of projections of polytopes that preserve full k-skeleta. More precisely, given the combinatorics of a polytope and the dimension e of the target space, what are obstructions to the existence of a geometric realization of a polytope with the given combinatorial type such that a linear projection to e-space strictly preserves the k-skeleton. ...
متن کامل19 Polytope Skeletons and Paths
The k-dimensional skeleton of a d-polytope P is the set of all faces of the polytope of dimension at most k. The 1-skeleton of P is called the graph of P and denoted by G(P ). G(P ) can be regarded as an abstract graph whose vertices are the vertices of P , with two vertices adjacent if they form the endpoints of an edge of P . In this chapter, we will describe results and problems concerning g...
متن کامل